Numerical Modeling of a Metamaterial Biosensor for Cancer Tissues Detection

Authors

Abstract:

In this paper, the numerical design and simulate a biosensor to detect tumors and cancerous tissues by using metamaterial structures in the microwave regime are presented. The presented structure consists of a microstrip transmission line and a split ring resonator (SRR) that form a bandpass filter and has a unique resonance frequency. Given that cancerous tissues have larger volumes of water than healthy tissues. As a result, they have a higher dielectric coefficient and conductivity which use for healthy tissues detection. By placing biological samples on SRR, its dielectric constant changes, therefore, the resonance frequency of the system changes. We can measure the types of biological tissues by measuring these changes. We used the Debye model to simulate the muscles. Also, the benefits of this biosensor are easy to use and operation, but they have lower sensitivity than terahertz biosensors. The minimum resolution for samples under test in this biosensor is 10 MHz.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Common Raman Spectral Markers among Different Tissues for Cancer Detection

Introduction Raman spectroscopy is a vibrational spectroscopic technique, based on inelastic scattering of monochromatic light. This technique can provide valuable information about biomolecular changes, associated with neoplastic transformation. The purpose of this study was to find Raman spectral markers for distinguishing normal samples from cancerous ones in different tissues. Materials and...

full text

Micro-cantilevered MEMS Biosensor for Detection of Malaria Protozoan Parasites

In this paper, the presented work aims to provide a designed model based on Finite element method for detection of Malaria protozoan parasites. Micro-cantilevers are next generation highly efficient biosensors for detection and prevention of any disease. Here, an E-shaped model for micro cantilevered biosensor is designed using COMSOL Multiphysics specifically for detection of Malaria. Microcan...

full text

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

full text

Computational modeling of amperometric choline biosensor for neurochemical detection

The behavior of biosensors is based on the well-defined physical, chemical and biological reactions, which are expressed by nonlinear differential equations. The characteristics of diffusion reaction of choline biosensor are analyzed mathematically for wide range of input parameters such as initial concentration of choline and thickness of choline oxide enzyme layer. The mathematical simulation...

full text

Au nanoparticles/g-C3N4 modified biosensor for electrochemical detection of gastric cancer miRNA based on hairpin locked nucleic acids probe

Objective: The annual incidence of cancer in the world is growing rapidly. The most important factor in the cure of cancers is their early diagnosis. miRNA, as a biomarker for early detection of cancer, has attracted a lot of attention. Methods: In this study, an electrochemical biosensor was developed to detect the amount of miR-106a, the biomarker of gastric cancer, by modifying a glass...

full text

A Numerical Investigation of Metamaterial Antireflection Coatings

Electromagnetic metamaterials have emerged as a new class of effective media where exotic properties are determined from structural geometry and dimensions of the basic building blocks, or meta-atoms. Through such a bottom-up approach, metamaterials have found applications in the construction of terahertz functional devices and components with unprecedented performance. In this paper, we numeri...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  1- 18

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023